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We present an extended study of anyonic Luttinger liquids wires jointing at a single point. The model on the
full line is solved with bosonization and the junction of an arbitrary number of wires is treated imposing
boundary conditions that preserve exact solvability in the bosonic language. This allows us to reach, in the
low-momentum regime, some of the critical fixed points found with the electronic boundary conditions. The
stability of all the fixed points is discussed.
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I. INTRODUCTION

In the last few years there has been a boom in the study of
transport properties at the junction of multiple quantum
wires.1–26 This interest is largely motivated by the fact that
junctions of three or more wires would naturally appear in
any quantum circuit. Different frameworks have been devel-
oped to tackle this complicated problem that shows a rich
phase diagram. In fact, despite of the universality in the bulk
of the wires that are described by a Luttinger liquid,27 differ-
ent conditions at the junctions can lead to exotic phase dia-
grams �as, e.g., those in Refs. 1, 9, and 23� whose degree of
universality is not yet understood. According to the
renormalization-group �RG� theory of critical phenomena,
the low-energy properties of a gapless system are captured
by the stable fixed point of the RG flow, independently of
microscopic �nonuniversal� details of the real system. In
view of the universality it is worthy to investigate very
simple models, even exactly solvable, that can have �because
of symmetry reasons� the same fixed points of the real sys-
tems. For bulk one-dimensional �1D� models and in the case
of a single boundary, conformal field theory provides a com-
plete classification of the universality classes �see, e.g., Ref.
28�, whose analogous for junctions �or star graph� is not yet
known. For all these reasons, we investigate in this paper the
Tomonaga-Luttinger �TL� model on a junction with an arbi-
trary number n of arms as depicted in Fig. 1 �a junction with
two wires n=2 can be seen as a defect on the line, a problem
that has been largely investigated29–40 in the past�. To solve
this problem, at the junction we impose conditions that are
probably not obvious for an electronic problem, but they

show the advantage to be exactly solvable. The natural hope
is that the electronic model, at least for some values of the
couplings, would be in the domain of attraction of the fixed
points found here.

Furthermore we calculate the transport for particles with
generalized anyonic statistics.41 The reason for this generali-
zation is twofold. On one hand the study of 1D anyonic
model is attracting a renewed interest,42–59 mainly motivated
by possible experiments with cold atoms.60 On the other
hand, the transport of wires joined with a quantum Hall is-
land is driven by anyonic excitations.12 Also in this case we
can wonder whether the different problems have some com-
mon fixed points. In 1D, anyonic statistics are described in
terms of fields that at different points �x1�x2� satisfy the
commutation relations

�†�t,x1���t,x2� = e−i����x12���t,x2��†�t,x1� ,

�†�t,x1��†�t,x2� = ei����x12��†�t,x2��†�t,x1� , �1�

where ��x� is the sign function ���z�=−��−z�=1 for z�0 and
��0�=0� and x12=x1−x2. � is called statistical parameter and
equals 0 for bosons and 1 for fermions. Other values of �
give rise to general anyonic statistics “interpolating” between
the two familiar ones.

The TL model emerges naturally in the description of
spinless fermions in 1D �and so electrons when the spin de-
grees of freedom are not important, but spin is also easily
introduced in the formalism�. In fact, starting from fermions
hopping on a chain, linearizing the dispersion relation close
to the Fermi surface at �kF and taking the continuum limit,
one arrives to the standard TL Hamiltonian27

H =� dx�vF��1
�i�x�1 − �2

�i�x�2� + g+	+
2 + g−	−

2� , �2�

where �1,2�t ,x� are the two complex fields representing free-
fermions left and right movers, vF is the Fermi velocity, i.e.,
the speed of the noninteracting fermions, and

	��t,x� = ��1
��t,x��1�t,x� � �2

��t,x��2�t,x�� �3�

are the two independent charge densities. All the interaction
is encoded in the coupling constants g� �often the couplings
g2,4=2�g+
g−� are used�. Eventual irrelevant coupling terms
of degree greater than 4 have been dropped. For g+�g− the
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FIG. 1. �Color online� A quantum junction of n wires connected

via a scattering matrix S.
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model is repulsive and it is attractive in the opposite case.
A similar reasoning can be repeated for anyonic degrees

of freedom and the Hamiltonian is always given by Eq. �2�,
but with �� satisfying the commutation relations �1�; �1 with
� and �2 with −�. Thus, when �=1 the model is the well-
known fermionic TL model, while the bosonic limit �→0 is
not well defined in this formalism as will be clearer in the
following. We stress that this anyonic model is different from
the gases discussed elsewhere42,43,46,49,56 that also have a Lut-
tinger liquid description. As in the fermionic case, the model
is naturally solved exactly through bosonization.27

This Hamiltonian defines completely the system on each
wire. To complete the description of the junction such as the
one shown in Fig. 1 we have to define the interaction be-
tween the n wires. From an electronic point of view it is
natural to have a term of the form1

��
��t,0,i�B��ij���t,0, j� , �4�

where � ,�=1,2 and i , j=1. . .n. The matrix B defines the
boundary interaction among the fields �. Although very natu-
ral, this boundary condition is quite complicated after
bosonization because it involves exponential boundary inter-
actions of the bosonic fields. As a consequence the theory
with this interaction term is no longer exactly solvable with
bosonization, and very smart and complicated methods must
be employed to extract the low-energy behavior from it.1,9 In
this paper we take an alternative approach that is to modify
the junction couplings in such a way to preserve the exact
solvability after bosonization.20–22 The main idea is to im-
pose the boundary condition directly on the bosonic degrees
of freedom trying to have the same symmetries as in the �
counterpart. The two problems can obviously have a differ-
ent structure of fixed points, but, as stressed above, the natu-
ral hope is that the junction defined by Eq. �4� shares some of
the anyonic fixed points with the ones found here, as it is
well known to happen for fermions. The clear advantage of
our approach is that keeping exactly solvability, the results
are obtained with a relative little effort, compared to analo-
gous ones for Eq. �4�.

The paper is organized as follows. In Sec. II we introduce
the anyonic TL model and solve it on the full line. In Sec. III
after introducing the general features of the junction and the
importance of conservation laws, we first present the stan-
dard solution on half line and then generalize it to the generic
junction. In Sec. IV we study the stability of the found fixed
points following the RG flow. Finally in Sec. V we draw our
conclusion and discuss issues that need further investigation.
In Appendixes A and B we report the technicality of
bosonization and the description of the fixed points of the
junction.

II. ANYONIC TOMONAGA-LUTTINGER MODEL

As already mentioned, the main goal of this paper is to
investigate the Tomonaga-Luttinger model on half infinite
quantum wires jointing in a single junction. However, in or-
der to fix the notation and some basic tools, it is instructive
to sketch first the solution of model on the line. In doing that
we will focus on the general anyonic solution, which con-

tains the more familiar fermionic one as a special case. The
model is defined by the Hamiltonian �2� in which the space
variable x is integrated on the full real axis. The correspond-
ing equations of motion are

i��t − vF�x��1�t,x� = 2g+	+�t,x��1�t,x� + 2g−	−�t,x��1�t,x� ,

i��t + vF�x��2�t,x� = 2g+	+�t,x��2�t,x� + 2g−	−�t,x��2�t,x� .

�5�

Bosonization27 is the basic tool to quantize and solve these
equations of motion. In fact, the solution can be expressed in
terms of the right- and left-moving scalar fields R,L. The
standard details of the solution can be found in textbooks27

and are reported in Appendix A to make this paper self-
contained. The method is based on the change of variable

�1�t,x� � :ei����R�vt−x�+�L�vt+x��: , �6�

�2�t,x� � :ei����R�vt−x�+�L�vt+x��: , �7�

where the proportionality constants are explicitly given in
Appendix A and :¯: denotes the normal product relative to
the creation and annihilation operators of  fields. �, �, and
v are three real parameters to be determined inserting these
expressions in the equations of motion. Without loss of gen-
erality we take ��0 and assume that

� � � � . �8�

The charge densities take the very simple form

	��t,x� =
− 1

2���� � ��
���R��vt − x� � ��L��vt + x�� .

�9�

Imposing the current conservation

�t	��t,x� − v�xj��t,x� = 0, �10�

one gets the currents

j��t,x� =
��R��vt − x� 
 ��L��vt + x�

2���� � ��
. �11�

Using the exchange properties of , one can easily show
that that the field �1 satisfies the anyonic commutation rela-
tions given in Eq. �1� with statistical parameter

� = �2 − �2. �12�

According to Eq. �8�, ��0, which shows explicitly that the
bosonic limit is not well defined in this context. The ex-
change relations of �2 follow from Eq. �1� with the substitu-
tion ��−�, implying that �� are both anyon fields, which
become canonical fermions for �=1.

The quantum equations of motion are obtained from Eq.
�5� by replacing 	��t ,x����t ,x�� :	���: giving

��v − vF�� =
g+

� + �
+

g−

� − �
, �13�
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��v + vF�� =
g+

� + �
−

g−

� − �
, �14�

which, combined with Eq. �12�, determine �, �, and the ve-
locity v in terms of the coupling constants g� and the statis-
tical parameter �. In terms of the variables ��=���, one
obtains the system of equations

�+�− = � , �15�

v�+
2 = vF� +

2

�
g+, �16�

v�−
2 = vF� +

2

�
g−, �17�

with solution

��
2 = ������vF + 2g+

��vF + 2g−
	�1/2

, �18�

v =
����vF + 2g−����vF + 2g+�

����
. �19�

The relations �18� and �19� are the anyonic realization of the
well-known result valid for canonical fermions in the TL
model �the traditionally used parameter K in our notation
coincides for �=1 with �−

2 =�+
−2; for comparison to Refs. 9

and 23 the notation is g=K−1�. The stability conditions of the
model is 2g��−��vF, which ensures �, �, and v to be real
and finite.

From the previously given mapping it is easy to write the
Hamiltonian in terms of the bosonic fields obtaining

H =
v
2
� dx���x��2 + ��x�2� , �20�

where

�t,x� =
1

2
�R�vt − x� + L�vt + x�� , �21�

��t,x� =
1

2
�R�vt − x� − L�vt + x�� , �22�

where � is the so-called dual field. Notice that the Hamil-
tonian is slightly different from the usual one in the literature
because we adsorb the coupling constant g �or K� in the
definition of the fields.

It is worth commenting at this point the internal symme-
tries of the TL Hamiltonian because they will characterize
the quantization on the junction. The TL Hamiltonian �2� is
left invariant by the two independent U�1� phase transforma-

tions usually denoted as U�1� � Ũ�1�,

�� → eis��, ��
� → e−is��

� , �23�

�� → e−i�− 1��s̃��, ��
� → ei�− 1��s̃��

� . �24�

In the bosonic language they correspond to the independent
shift invariance of the �compactified� fields R,L. We will see

that on the junction, the left and right movers are not inde-
pendent anymore and the two U�1� symmetries cannot be
conserved simultaneously.

One of the main advantages of bosonization is that after
having solved the equations of motion, it is straightforward
to obtain all the correlation functions �also at finite tempera-
ture� just by commuting the fields  in the exponential forms
for � using Eq. �A15�. In fact, in terms of the basic correlator

D�x� =
1

i�x − i��
, �25�

the zero-temperature �Fock representation� field correlation
functions are


�1
��t1,x1��1�t2,x2�� =

1

2�
�D�vt12 − x12���

2
�D�vt12 + x12���

2
,


�2
��t1,x1��2�t2,x2�� =

1

2�
�D�vt12 − x12���

2
�D�vt12 + x12���

2
,

�26�

with x12=x1−x2 and t12= t1− t2. Scale invariance is manifest
and one can read the dimension of ��

dline =
1

2
��2 + �2� =

1

4
��+

2 + �−
2� . �27�

All the other two-point field correlation functions vanish be-

cause of Eq. �8� and the neutrality condition �U�1� � Ũ�1�
symmetry�. Analogously for the U�1� density one finds


	+�t1,x1�	+�t2,x2�� =
1

�2��+�2 ��D�vt12 − x12��2

+ �D�vt12 + x12��2 , �28�

and straightforwardly the ones for 	− and j� are obtained.
We notice that all these correlation functions correctly agree
with the general expression for a harmonic anyonic fluid48

with only one harmonic term given by the Luttinger mode.
The generalization to finite temperature �−1 �Gibbs repre-

sentation� is simply obtained with the replacement D�x�
→D��x� with

D��x� = � i�

�
sinh��x

�
− i�	�−1

, �29�

and introducing the chemical potentials explicitly,


�1
��t1,x1��1�t2,x2��� =

1

2�
ei�R��vt12−x12�+i�L��vt12+x12�

� �D��vt12 − x12���
2
�D��vt12 + x12���

2
,

�30�

and similarly for the other correlations. The right and left
chemical potentials are
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�R =
�

�+
−
�̃

�−
, �L =

�

�+
+
�̃

�−
, �31�

where � and �̃ are the ones associated with the U�1�
� Ũ�1� charges.

III. JUNCTION OF TOMONAGA-LUTTINGER LIQUIDS

A. Boundary conditions and symmetries

After the previous preliminary considerations on the line,
we investigate below the TL model at a junction such as the
one shown in Fig. 1. In mathematical physics literature these
junctions are usually called star graphs and they represent
the building blocks for more general “quantum graph” net-
works �see for a review Ref. 61�. We now fix all the nota-
tions on the junction that we call �. We indicate the jointing
point of the junction as V. Each point P in the bulk � \V �i.e.,
of the wires� can be parametrized by the pair �x , i�, where i
=1, . . . ,n labels the edge Ei and x� �0,�� is the distance of
P from the vertex V along that edge. We stress that, as physi-
cally suggested, the embedding of � and the relative position
of the edges in the “ambient space” are irrelevant.

The dynamics of each wire �edge� is still given by the
Hamiltonian �2�, but now ��=���t ,x , i� and x�0. As al-
ready discussed in Sec. I, in order to fix the solution one
must impose some boundary conditions at the vertex V at x
=0. The simplest boundary condition one can imagine is lin-
ear in �� and is generated by the boundary term in Eq. �4�
that makes the model nonexactly solvable for general cou-
plings �see, e.g., Ref. 1 for free fermions and also Ref. 9 for
infinite repulsive coupling�.

An alternative which preserves the exact solvability after
bosonization has been proposed.20–22 The main idea is to
impose the boundary condition directly on the bosonic de-
grees of freedom, selecting those of them which ensure uni-
tary time evolution of the fields . This is guaranteed only if
the boundary conditions are linear in the fields  and its first
derivatives. So we can parametrize these boundary condi-
tions by a generic n�n unitary matrix U,20,21,62,63

�
j=1

n

���I − U�ij�t,0, j� − i�I + U�ij��x��t,0, j�� = 0, �32�

and ��0 is a parameter with dimension of mass needed to
recover the correct physical dimensions. Since bosonization
expresses physical charges linearly in , we shall see below
that these boundary conditions simply state how the charges
are parceled out among the wires at the vertex.

The analysis of the fixed point is greatly simplified if we
assume time-reversal invariance. This implies that the matrix
U must be real, that together with unitarity leads to a sym-
metric matrix U, i.e.,

Ut = U , �33�

giving a further constraint on the possible boundary terms. A
nontrivial magnetic flux �breaking time reversal� has been
considered9 and resulted in a more complicated fixed point
structure. When dealing with anyon excitation, it would be

more natural to consider non-time-reversal models because
the magnetic field needed to produce the anyons breaks the
symmetry. However this would complicate the analysis and
in some regime it could be only an irrelevant perturbation.
Thus in the following we will always assume time-reversal
invariance and leave the study of the effect of its breaking to
a future work.

The boundary condition �32� is equivalent20,21 to an inter-
action with a pointlike defect localized at the vertex of the
graph. The scattering matrix associated with this interaction
is20,21,62

S�k� = − ���I − U� + k�I + U��−1���I − U� − k�I + U��

�34�

and has transparent physical meaning: the diagonal element
Sii�k� represents the reflection amplitude on the edge Ei,
whereas Sij�k� with i� j equals the transmission amplitude
from Ei to Ej. Equation �34� makes also clear the meaning of
the boundary terms � and U: for ��0 we have S�k=��=U,
i.e., � fixes the momentum scale at which the scattering ma-
trix is given exactly by U.

By construction the scattering matrix �34� is unitary

�S�k��� = �S�k��−1 �35�

and satisfies Hermitian analyticity

�S�k��� = S�− k� . �36�

Moreover, time-reversal invariance �33� implies

�S�k��t = S�k� . �37�

For simplicity we assume in this paper that U is such that

�
−�

� dk

2�
eikxSij�k� = 0, x � 0, �38�

which guarantees that S�k� has no bound states �see Ref. 64
for an extension to bound states�.

The boundary conditions strongly influence the symmetry
content on the junction. Each symmetry in the bulk gives a
conserved charge Q �with density 	�x , t�� because of the No-
ether theorem. If we want to keep the conservation of Q at
the junction we must impose from the beginning that the
currents j�x , t� corresponding to the given density 	�x , t� are
conserved at the vertex. This results in �i=1

n j�0, t�=0 for all
times. This is the Kirchhoff’s rule, which must be imposed in
the vertex in order to generate a time-independent charge
from a given current. A basic example is given by the energy,
which is a conserved quantity in the bulk. Because of unitar-
ity, the matrix U in Eq. �32� parametrizes all boundary con-
ditions which ensure the Kirchhoff rule for the energy-
momentum tensor of  and thus the time independence of
the relative Hamiltonian. This means that there is no dissipa-
tion at the junction: if the energy flows out from one wire
should flow in another one. We stress that the Kirchhoff’s
rule for gapless models on a graph is the generalization of
the celebrated result that scale invariance implies holomor-
phic and antiholomorphic components of the energy tensor to
be equal in boundary conformal field theory.28,65
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Energy is not the only conserved quantity. In our formal-
ism it is conserved by construction, but all other conserva-
tion laws we want to keep on the junction must be imposed
by hand with appropriate Kirchhoff’s rules. However it may
happen that different conserved currents can generate contra-
dictory Kirchhoff’s rules, resulting in obstructions for lifting
all symmetries on the line to symmetries on �.66 In this case
one can preserve on � one of the corresponding symmetries,
but not all of them. This is actually the case for the U�1�
� Ũ�1� symmetry of the TL model. In fact, the relative
Kirchhoff rules generate21 the following further constraints
on U:

�
i=1

n

j+�t,0,i� = 0 ⇔ �
i=1

n

S ji�k� = �
i=1

n

U ji = 1, �39�

�
i=1

n

j−�t,0,i� = 0 ⇔ �
i=1

n

S ji�k� = �
i=1

n

U ji = − 1, �40�

which cannot be satisfied simultaneously. U�1� is linked to
the electric charge conservation and it is then natural to re-
quire the conservation of Eq. �39� while breaking Eq. �40�.
However also the opposite prescription has some interests.
Notice that the duality transformation �A12� on � maps the
matrix U �and so S�k ,��� in −U �−S�k−1 ,�−1��. Consequently

duality maps the vertex conservation of U�1� in Ũ�1�.
The matrix conductance G of the junction can be obtained

in linear-response theory. Since it involves only currents, the
calculation is the same as for free bosons,21,22 but with the
renormalized current in Eq. �11�, leading to an overall nor-
malization

G =
1

2��+
2 �I − S� = Gline�I − S� . �41�

Thus the dependence of the conductance on the anyonic pa-
rameter is only through the renormalization constant �+ in
Eq. �18�. Because of unitarity �Sii��1, we have

0 � Gii � 2Gline. �42�

In the following, we will call conductance G the diagonal
element Gii in the case it does not depend on the wire index
i.

It is worth mentioning that a similar approach �called de-
layed evaluation of boundary condition� working also with
fermion boundary conditions was developed by Chamon and
co-workers.9,23 It basically amounts to leave in the half line,
right and left movers unconstrained in the bulk, constructing
then the tunneling operators, and only later choosing an R
matrix �R for reflection, it can be easily rewritten as an S
matrix� such that one of these processes pins the correct
boundary conditions. In the appendix A of Ref. 23 the con-
ductance is written in terms of an n�n R, which agrees with
the results here and elsewhere.21,22

B. Half line

It is instructive to start with the well-known case n=1,
namely, the half line, since some features of the generic junc-

tion are already manifest in this case. The matrices U and S
are just numbers U and S. Setting U=e−2i�, we get

S�k� =
k − i�

k + i�
, �43�

with

� = � tan���, −
�

2
� ��

�

2
. �44�

As expected the S matrix �43� corresponds to full reflection
and describes the mixed �Robin� boundary condition

��x��t,0� − ��t,0� = 0. �45�

The condition �38� implies ��0 or equivalently 0��
�� /2. �=0 and �=� /2 correspond to Neumann and Di-
richlet boundary conditions, respectively. These two points
define the only bosonic scale-invariant boundary conditions
on the half line. Instead of imposing the condition �45�, we
can add a term to the Hamiltonian in such a way to generate
it as a further equation of motion. The resulting total Hamil-
tonian is

Htot = H + �2�t,0� , �46�

with H the bulk term given by Eq. �20�, obviously defined
only on the half line, i.e., the integral is over x� �0,��.

The main effect of the boundary in x=0 is to couple right
and left movers by means of the boundary condition �45�. In
particular, at criticality, Eq. �45� implies that

L��� = R���, � = 0, �47�

L��� = − R���, � = � , �48�

which is the familiar “unfolded picture”1 for Neumann and
Dirichlet boundary conditions. The boundary conditions then
forces nonzero mixed commutation relation �from Eqs.
�A19� and �A20�� between right and left movers

�R��1�,L��2�� = �− i���12� , � = 0,

i���12� , � = � ,

i���12� − 4i���12�e−��12, 0 � �� � ,
�

�49�

while the left-left and right-right ones are the same as in the
full line. Note that in the right-left commutators it appears
�12=vt12− x̃12, involving, as expected, the sum of distances
from the boundary x̃12=x1+x2.

Although right and left modes are no longer decoupled,
we can still perform the bosonization program and solve the
TL model on the half line. The anyonic exchange relations
�1� are still valid defining �� as in Eqs. �6� and �7� �but with
normalization constants depending on the boundary condi-
tions, see Eq. �A18��. �� fulfills the quantum equations of
motion of the TL model restricted to the half line x�0, with
�, �, and v given by the same expressions �18� and �19�
found for the full line. In fact, all the local bulk relations of
the TL model on the full line still hold on the half line. This
will remain true in the more general case of a junction made
of any number of wires.
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The charge and current densities Eqs. �9� and �11� are still
locally conserved �i.e., Eq. �10� holds for x�0� and 	� gen-

erate the U�1� � Ũ�1� infinitesimal transformations �A16�.
After bosonization, the boundary condition �45� can be re-
casted in terms of physical currents

j+�t,0� = 0, � = 0,

j−�t,0� = 0, � = � ,

�xj−�t,0� − �j−�t,0� = 0, 0 � �� � . �50�

Consequently, the main physical difference between half and

full lines concerns the global charges Q and Q̃ associated to
charge densities 	+ and 	−, respectively. The boundary spoils
the simultaneous conservation of both charges, allowing just
one linear combination to survive. For instance, at the critical
point �=0, the boundary condition �45� is simply the Kirch-
hoff’s rule associated to the U�1� transformation �23�, en-
forcing the charge-density current j+ to vanish at the vertex
while j− does not,

j+�t,0� = 0, j−�t,0� � 0, for � = 0. �51�

In this case Q is time independent, while Q̃ depends on time
due to a nontrivial charge flow through the boundary. The
critical point �=� has an opposite behavior, preserving the

Ũ�1� transformation �24� and breaking �23�. For generic fi-

nite ��0, it is easy to see that the Ũ�1� symmetry is always
conserved while U�1� is broken.34 As already pointed out,

this symmetry breaking from U�1� � Ũ�1� to a subgroup
U�1� is a general unavoidable feature of junctions of any
number of wires.

This boundary symmetry breaking is even more visible in
the correlation functions. In addition to the usual right-right
and left-left bosonic correlators, there are also mixed ones
�Eqs. �A9�, �A19�, and �A20��. As a consequence there are
four nonvanishing two-point correlators for ��, instead of
just two as for the full line. For instance, considering the
critical case �=0, when the U�1� transformation �23� is pre-
served, we have


�1
��t1,x1��1�t2,x2�� = 
�1�t1,x1��1

��t2,x2��

= �D�vt12 − x12���
2
�D�vt12 + x12���

2

��D�vt12 − x̃12�D�vt12 + x̃12����,

�52�


�1
��t1,x1��2�t2,x2�� = 
�2�t1,x1��1

��t2,x2��

= �D�vt12 − x12�����D�vt12 + x12����

��D�vt12 − x̃12���
2
�D�vt12 + x̃12���

2
,

�53�

and


�2
��t1,x1��2�t2,x2�� = 
�2�t1,x1��2

��t2,x2��

= �52� with � ↔ � , �54�


�2
��t1,x1��1�t2,x2�� = 
�1�t1,x1��2

��t2,x2��

= �53� with � ↔ � , �55�

with x̃12=x1+x2. The nontriviality of the correlators �53� and

�55� reflects the breaking of the Ũ symmetry on the half line
for �=0.

All the correlation functions just derived must be com-
pared to the general scaling form coming from boundary
conformal field theory65 that in imaginary time �i=iti pre-
dicts in general


���z1���z2�� = � 1

z12z1̄2̄
	dline

F��� , �56�

with the four-point ratio

� =
z11̄z22̄

z12̄z21̄
�57�

and zi=xi+i�i, zī= z̄i. F��� encodes all the boundary depen-
dences and for small argument can be written as65 F���1�
��db, where db is called boundary exponent. The real time
correlations we wrote are clearly not of this form, but this is
just because we wrote them in the regimes x1 ,x2�1 and x12,
x̃12 arbitrarily using definitions �6� and �7�. If we want to get
the correct scaling also for arbitrary x1,2 we should modify
the definitions as

�1�t,x� � :ei���R�vt−x�::ei���L�vt+x�: , �58�

�2�t,x� � :ei���R�vt−x�::ei���L�vt+x�: , �59�

at the price of introducing some more divergences that are
easily renormalized. With this prescription, we obtain as a
typical example


�1
��t1,x1��1�t2,x2�� = 
�1�t1,x1��1

��t2,x2��

= �D�vt12 − x12���
2
�D�vt12 + x12���

2

��D�vt12 − x̃12�D�vt12 + x̃12�
D�2x1�D�2x2� ���

,

�60�

which agrees with the general conformal field theory scaling
with F���=��� and so db=��. All the other correlation func-
tions are easily modified accordingly. Because it will be
easier to write, in the following, we will ignore the double
normal product and still use definitions �6� and �7�. The ex-
pressions taking into account the correct normalization at the
boundary can be easily written down from the correlation we
will derive.

We finally point out that for Dirichlet boundary condi-
tions, i.e., �=�, the diagonal correlations are the same but
with db=−��. Nondiagonal correlations can be found in Ref.
34.

C. Generic junction

The case of a junction with an arbitrary number n�1 of
wires can be actually reduced to the study of a suitable fam-
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ily of n half lines. In fact, let U be the unitary matrix diago-
nalizing U which defines the boundary conditions �32�. Since
U is symmetric, we can choose U orthogonal, Ut=U−1, and
real, U�=U. Let us parametrize the diagonal form

Ud = UUU−1 �61�

as follows:

Ud = diag�e−2i�1,e−2i�2, . . . ,e−2i�n� . �62�

Using definition �34� of S�k�, one easily verifies that U di-
agonalizes S�k� for any k and that

Sd�k� = US�k�U−1 = diag� k − i�1

k + i�1
,
k − i�2

k + i�2
, . . . ,

k − i�n

k + i�n
	 ,

�63�

where

�i = � tan��i�, −
�

2
� �i �

�

2
. �64�

Therefore S�k� is a meromorphic function in the complex k
plane, whose poles are different from 0 and are all located on
the imaginary axis. The condition �38� implies absence of
bound states, i.e., of poles in the upper complex k plane,
namely, 0��i�� /2, hence �i�0.

Critical boundary conditions correspond to a matrix U
such that the scattering matrix is insensitive to the momen-
tum scale transformations �→�� �or k→�−1k� with ��0.
To be scale invariant, the scattering matrix must have each �i
vanishing or infinite, so that S is actually momentum inde-
pendent and with eigenvalues �1. By means of Eqs. �35�
and �36�, and the derivative21

k
dS�k�

dk
= −

1

2
�S�k� − S��k��S�k� , �65�

we see that criticality is equivalent to the condition

S = S�. �66�

In Appendix B some examples of critical junctions with two,
three, and four wires are given.

The matrix U allows us to define real scalar fields d

=U which are not localized on the single edges but have
simple boundary conditions, formally the ones of disjoined
half lines

��x
d��t,0,i� − �i

d�t,0,i� = 0, i = 1, . . . ,n . �67�

Comparing to the half line Eq. �49�, it is straightforward to
derive the commutation relations for the right and left mov-
ers on the wires as done in Refs. 20–22 and reported in
Appendix A.

D. TL model at the junction

The TL model on the star graph � is defined by the sum of
n Hamiltonians in Eq. �2� plus the boundary term that we
implement through Eq. �32� at the bosonic level. The charges
on each wire are defined via Eq. �3� and generate the U�1�
� Ũ�1� phase transformations �A16� and �A17� leaving the

Hamiltonian invariant. The corresponding quantum equa-
tions of motion in the bulk are given by Eq. �5� for each wire
independently.

In analogy with Eqs. �6� and �7�, the solution of the equa-
tions of motion is given by the vertex operator

�1�t,x,i� � :ei����i,R�vt−x�+�i,L�vt+x��: , �68�

�2�t,x,i� � :ei����i,R�vt−x�+�i,L�vt+x��: , �69�

where the normalization constants are given in Appendix A
and depend on the anyon Klein factors. All bulk relations
�the value of �, �, and v, the form of the currents, etc.� of TL
model on the line are still valid for half infinite wires jointed
in a single vertex.

It is interesting to rewrite the boundary condition �32� in
terms of physical quantities of the model: in particular at the
critical point �66� where R���=SL��� �i.e., a generalized
version of the unfolded picture of the half line�, the boundary
conditions get a very simple form

j��t,0,i� = 
 �
j=1

n

Sij j��t,0, j� , �70�

which simply fixes the splitting of the currents at the junc-
tion. Comparing this expression to the Kirchhoff conditions
�39� and �40�, we see that at least one of two charges Q and

Q̃, associated to 	+ and 	−, respectively, is dissipated by a
nontrivial flow at the vertex. Since 	+ generates the electric
charge for the �, Eq. �A16�, we typically require the Kirch-

hoff’s rule �39� to preserve electric charge, while Q̃ conser-
vation is lost.

As for the half line, the nontrivial behavior of right-left
correlators, due to the presence of vertex, allows more non-
vanishing correlation functions with respect to the line case.
Let us consider the two-point function for � in the Fock
representation and let us focus for simplicity on the case of
critical boundary conditions �66�. Imposing the Kirchhoff’s
rule on the charge Q generated by U�1�, there are four non-
vanishing two-point correlators


�1
��t1,x1,i1��1�t2,x2,i2�� =

zi1
zi2

2�
�−���2+�2� i1i2

+2��Si1i2
�

��D�vt12 − x12���
2 i1i2�D�vt12 + x12���

2 i1i2

��D�vt12 − x̃12�D�vt12 + x̃12����Si1i2, �71�


�1
��t1,x1,i1��2�t2,x2,i2�� =

zi1
zi2

2�
�−���2+�2�Si1i2

+2�� i1i2
�

��D�vt12 − x̃12���
2Si1i2�D�vt12 − x12�D�vt12 + x12���� i1i2

��D�vt12 + x̃12���
2Si1i2, �72�

with all normalization factors defined in Appendix A. All
other nonvanishing correlation functions have the same form
as the ones on the half line Eqs. �52�, �53�, and �55� with
only the proper wire index added.

For the charge densities one finds
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	+�t1,x1,i1�	+�t2,x2,i2�� =
− 1

�2��+�2 ��D2�vt12 − x12� + D2�vt12 + x12�� i1i2
+ �D2�vt12 − x̃12� + D2�vt12 + x̃12��Si1i2

 , �73�

and for the currents


j+�t1,x1,i1�j+�t2,x2,i2�� =
− 1

�2��+�2 ��D2�vt12 − x12� + D2�vt12 + x12�� i1i2
− �D2�vt12 − x̃12� + D2�vt12 + x̃12��Si1i2

 . �74�

The opposite signs in the  i1i2
and Si1i2

contributions in Eq. �74� ensure the Kirchhoff’s rule for Q. Analogous expressions hold
for 	− and j− up to replace in Eqs. �73� and �74� ��+��↔ ��−�� and S↔−S.

If instead we impose the conservation of the charge Q̃ we have the nonvanishing two-point correlation functions


�1
��t1,x1,i1��1�t2,x2,i2�� =

zi1
zi2

2�
�−���2+�2� i1i2

+2��Si1i2
��D�vt12 − x12���

2 i1i2�D�vt12 + x12���
2 i1i2�D�vt12 − x̃12�D�vt12 + x̃12����Si1i2,

�75�


�1�t1,x1,i1��2�t2,x2,i2�� =
zi1

zi2

2�
����2+�2�Si1i2

+2�� i1i2
��D�vt12 − x12�D�vt12 + x12��−�� i1i2�D�vt12 − x̃12��−�2Si1i2�D�vt12 + x̃12��−�2Si1i2,


�1�t1,x1,i1��1
��t2,x2,i2�� = 
�1

��t1,x1,i1��1�t2,x2,i2�� , �76�


�2�t1,x1,i1��1�t2,x2,i2�� = 
�2
��t1,x1,i1��1

��t2,x2,i2��

= 
�1
��t1,x1,i1��2

��t2,x2,i2��

= 
�1�t1,x1,i1��2�t2,x2,i2�� ,

�77�

and


�2
��t1,x1,i1��2�t2,x2,i2�� = 
�2�t1,x1,i1��2

��t2,x2,i2��

= Eq. �75� with � ↔ � . �78�

The nonconservation of the electrical charge is explicitly
shown by the presence of non-neutral correlator 
���. The
correlations for conserved density 	− and current j− are the
same as Eqs. �73� and �74�.

IV. RG FLOW ON THE JUNCTION

We completely characterized the fixed-point structure for
a junction with an arbitrary number of wires n. Let us recall
the main features explained in Sec. III and in Appendix B. At
the critical point, the scattering matrix can only have eigen-
values �1. For generic n, the fixed points are classified in
terms of the integer number p with 0�p�n, which is the
number of eigenvalues equal to −1. At the fixed point, the
boundary couplings �i �with 1� i�n� are zero if the corre-
sponding eigenvalue is +1 and infinity if the eigenvalue is
−1. p=0 corresponds to Neumann boundary conditions on
all wires, while p=n to Dirichlet. Other values of p corre-
spond to intermediate boundary conditions that are n− p
Neumann and p Dirichlet fields in the basis i

d diagonalizing
the S matrix. In Fig. 2 we report as a typical example the RG
flow diagram for three wires in the �i space. The final point
of any axis is �i=�. Let us discuss now the structure of the

fixed points, postponing the study of the stability to the fol-
lowing. There are 23=8 fixed-point families, one Neumann,
three points with p=1, three with p=2, and one Dirichlet �in
the general case, there are 2n families of which � n

p � for any

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

N

D

1

2

1

1

2

2

η

η

η

1

2

3

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

FIG. 2. �Color online� RG flow diagram for a junction of three
wires in the �1,2,3 space. The fixed points are: D is Dirichlet and
corresponds to all �i=�; N is Neumann with �i=0; 1 are three
fixed-point families �depending on two parameters� with two � van-
ishing and one infinite; 2 are three fixed-point two-parameter fami-
lies with one � zero and two infinite. The cyan-shaded area is the
allowed region when the Kirchhoff’s rule for the electric charge is
valid. It includes Neumann, two p=1 families �with only one pa-
rameter left free�, and one p=2 fixed point �with no free parameter
left�. The arrow in the flow corresponds to the attractive case with
g�1 which gives Dirichlet as the most stable fixed point �without
Kirchhoff� or the mixed p=2 �with Kirchhoff�. In the opposite re-
pulsive case g�1, all the arrows are reversed and the most stable
fixed point is Neumann.
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p�. Every critical point belongs to a continuous family with
p�n− p� real parameters that are not shown in Fig. 2. Sum-
marizing any critical point is identified by p, by the specific
eigenvalues that are −1 �i.e., by the axis in the figure� and by
the p�n− p� real parameters. The parameters specifying the
fixed point in the families are the angles �i reported for some
examples in Appendix B. For a given situation, the fixed-
point value of �i is given by their initial values. This means
that �i are marginal couplings and their values cannot be
fixed only by requiring scale invariance.

The role played by the conservation rules in this flow
diagram is fundamental. To consider the most physical case,
let us discuss when the electrical charge is conserved, i.e.,
the Kirchhoff rule �i j+�t ,0 , i�=0 is satisfied. The first effect
is to fix to zero one �arbitrary� �i, constraining the system on
the shadow area in Fig. 2 so that Dirichlet boundary condi-
tions are ruled out for the problem. Also the number of real
parameters characterizing the p fixed points is largely re-
duced. For three wires, the point with p=1 becomes a one-
parameter family, while the point with p=2 becomes an iso-
lated fixed point. Details for the general case are in Appendix
B. Needless to say that imposing the conservation of the

Ũ�1� charge results in fixing one of the �i to � and similarly
reduced the number of real parameters available for each
fixed point.

We briefly discuss our terminology for the fixed points in
order to make the comparison to other papers as simple as
possible. The fixed points with p=2 �“2” in Fig. 2� is the
mixed fixed point found by Nayak et al.1 and called D �or
DP� in Ref. 9 because of the n−1 Dirichlet boundary condi-
tions �there n=3� on the neutral modes �but this point is
obviously different from our D�. The family with p=1 in Fig.
2 depends on a continuous real parameter �, as shown in Eq.
�B4�, and it has been first found in Ref. 21. Note that it is not
symmetrical under wire permutations. There are three special
values of �: for �=−1,0 ,� the S matrix breaks into 1�1
and 2�2 blocks. The 1�1 block is a wire decoupled from
the other two that form a purely transmitting n=2 junction
�the same can be verified for higher n; changing the �’s we
can decouple any wire�. For these special values of �, the
fixed points were also found by Chamon et al.9 that called
them asymmetrical DA. Other values of � interpolate con-
tinuously between these three. Finally it is worth comment-
ing that the Dirichlet fixed point �D in Fig. 2� physically
corresponds to n wires with an end inserted into a large
superconductor. In fact, the S matrix S=−I gives conduc-
tance G=2I corresponding to Andreev reflection in all wires
�i.e., sending a particle one gets a hole out�. This is a differ-
ent problem from a junction of wires �even superconducting�
because the large superconductor breaks the U�1� charge
conservation.9,25

Now we know the fixed-point structure, but what is the
relative stability? Which fixed point describe the universal
low-energy behavior? There are several equivalent ways to
tackle this question. The more natural one, as done
elsewhere,1,9,23 relies on calculating the scaling dimension of
the perturbing operator at a given fixed point. Since our
problem can be thought as n independent half lines with n
− p Neumann boundary conditions and p Dirichlet ones, the

problem is just equivalent to understand the stability of Neu-
mann or Dirichlet against a Robin term as in the Hamiltonian
�46�. This is a standard problem. In the bosonic theory, the
flow can be followed exactly from Eq. �65� of the off-critical
S matrix. The Neumann fixed point is always unstable, while
Dirichlet is stable �or mixed if Kirchhoff is imposed on the
electrical charge�. However, as well known, considering the
fermionic theory changes this scenario because of the Klein
factors. In boundary conformal field theory, the stability con-
ditions are just read from the boundary dimensions db ap-
pearing in the two-point correlation functions reported
above. At the Neumann boundary condition �BC� we have
the dimension ��= ��+

2 −�−
2� /4 that is greater than zero for

g+�g−, i.e., for repulsive anyonic interaction, giving a stable
Neumann. Oppositely at the Dirichlet BC the boundary di-
mension is −�� that it is stable in the complementary attrac-
tive case. Since there are no other fixed points in the RG
diagrams, this analysis fixes all the RG flow. Note that for
free anyons �and in particular fermions� � is marginal in this
approach. In any given anyonic or fermionic model the ac-
tual stable fixed point will be determined by the higher order
terms in � neglected in our approach.

These results can be confirmed on the basis of the follow-
ing argument based on the so-called g theorem.67,68 For a
one-dimensional critical system with a boundary, it is known
that the boundary contribution to the entropy ln g �g is the
so-called “universal noninteger ground-state degeneracy”67�
decreases along the renormalization-group flow. We can eas-
ily calculate the value of the effective potential Veff=g+	+
+g−	− for the off critical model for any �. Subtracting the
divergent contribution of the bulk to make this expectation
value finite, we get on each wire

!�x,i� = 
Veff�t,x,i�� = "�
−�

+� dk

2�
�k�e2ikxSii�k� , �79�

where

" = �g−�−
2 − g+�+

2

2��2 	 �80�

fully encodes the bulk interactions effect. In particular, when
g+=g− it vanishes and changes sign, giving the correct sta-
bility scenario.

In fact, we can rewrite Eq. �79� in terms of the potential
!�j

�x� for disjointed half line with the boundary condition
�67�

!�x,i� = �
j

n

�U ji�2!�j
�x� , �81�

with

!��x� = −
"

4x2 �1 − 4�x�� − 8�x��2e2x�Ei�− 2 � ��� .

�82�

The function
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s�x� = − 4x2�
i=1

n

!�x,i� = − 4x2�
j=1

n

!�j
�x� �83�

collects the contribution of all the wires. It is a monotonous
function with fixed points at �=0,� in agreement with the g
theorem. The stability of the fixed points and the direction of
the flow are just given by the sign of " and agree with the
previous analysis.

V. CONCLUSIONS

In this paper we presented a systematic study of the criti-
cal properties of n anyonic Luttinger wires jointed in a single
vertex. Imposing the boundary conditions �32� at the junction
directly on bosonized fields allowed us to describe com-
pletely the RG flow diagram for any n. As a typical example
the RG flow for n=3 is depicted in Fig. 2 where the main
features of the various fixed points are discussed in the text.

At this point it is worth comparing our findings with the
literature. For two wires, our results are a simple anyonic
generalization of the well-known ones by Kane and Fisher29

for fermions that are reproduced for �=1. For n=3, as we
said in Sec. I, the literature is enormous. The boundary con-
ditions we used are equivalent to those of the “auxiliary
model” of Nayak et al.1 for g�1 �in fact, expanding the
exponential defining the auxiliary model1 and keeping only
up to the quadratic terms, neglecting irrelevant higher orders,
we arrive to the Hamiltonian �46� where the symmetry of the
boundary terms is just the Kirchhoff’s rule�. We predict two
possible stable fixed points: Neumann and mixed. Neumann
is well known, it has zero conductance, and in this setting it
is stable for all repulsive interaction, i.e., g�1. The mixed
fixed point has been found for the first time by Nayak et al.1

and it is specific of the junctions. It has enhanced conduc-
tance G /Gline=4 /3 and we found it is stable for all attractive
interactions g�1 as in Ref. 1. Everything agrees with the
auxiliary model, but not with the “standard model” defined
by the boundary condition �4� that is known to be different.1

In fact in the standard model, the Neumann fixed point is
stable only for g�1 /3 while the mixed one only for g�9. In
the other regimes with 1 /3�g�9, new fixed points appear
that cannot be present in our approach.1,9 Our setting how-
ever presents a great advantage: it is simpler for generic n
and more efficient in describing the off-critical properties of
the system. In fact we provide the critical behavior for all n.
We found for g�1 a Neumann stable fixed point �with zero
conductance� and for g�1 a mixed fixed point with conduc-
tance G /Gline=2�n−1� /n. We also find other fixed points
�described in Appendix B� that however have at least one
direction of instability in the �i space and so they are multi-
critical points in the sense that some other constraints must
be imposed to reach them. Clearly we expect that the stan-
dard model for n�3 will have some fixed points not found
here, as for the case n=3. A part from the per se interest of
the model, the fixed points we found are relevant for the
standard model as well. In fact, it is easy to generalize to any
n the strong and weak boundary coupling �i.e., our �� calcu-
lations of Refs. 1 and 9 to show that for small enough g the
relevant fixed point is Neumann and for large enough is the

mixed one. However, which fixed point governs the dynam-
ics when none of these two is stable is not accessible to our
approach. For n=4, two fixed points derived in Appendix B
have been recently found to describe the scattering matrix for
a proposed experiment to detect the helical nature of the
edge states in quantum Hall systems.26

We mention that we also characterized the junction in the
absence of the Kirchhoff’s rule for the electric charge. It is of
particular relevance considering the case when relaxing the
conservation of the electrical charge and imposing the con-

servation of the dual one Ũ�1�. In this case the more stable
fixed point is always Dirichlet with uncommon points such
as the mixed one representing multicritical points.

There are two generalizations of the model considered
here that should be easily accessible to a similar analysis.
First of all one can consider fermions with spin �and even
multispecies anyons� as done elsewhere with fermionic
boundary conditions.23 In this way one can understand which
fixed points are present also with bosonic boundary condi-
tions. The other generalization is relaxing the symmetry for
time reversal to allow a nonvanishing flux at the junction.9

We close this paper on a more speculative level. In recent
times there has been an increasing interest in quantifying the
entanglement in extended quantum systems �see, e.g., Ref.
69 as review�. Among the various measures, the so-called
entanglement entropy has by far been the most studied. By
partitioning an extended quantum system into two blocks,
the entanglement entropy is defined as the von Neumann
entropy of the reduced density matrix 	A of one of the two
blocks. This procedure requires an arbitrary division of the
system in two parts. In the junction problem studied here the
system is automatically divided in parts and it would be very
interesting to understand the amount of entanglement be-
tween the various wires. The analysis of some models on the
line with one defect70 �i.e., n=2 in the language of this pa-
per� showed that the entanglement entropy is not always only
dependent on the central charge of the bulk theory �as maybe
naively expected�. The natural question is whether the con-
formal field theory formalism that has been successfully ap-
plied to the bulk and boundary cases71 can be generalized to
the junction. Furthermore, if we would be able to solve the
nonequilibrium problem with changing the boundary condi-
tion �e.g., suddenly adding or removing the junctions, as
done for n=2 in Ref. 72�, one can think of using the junction
as an entanglement meter following the recent proposal
based on quantum noise measurement.73
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APPENDIX A: BONSONIZATION AND QUANTIZATION
OF THE TL MODEL

1. Line

The basic tool for quantizing the system, described by Eq.
�5�, is the algebra A generated by the bosonic annihilation
a�k� and creation a��k� operators satisfying
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�a�k�,a�p�� = �a��k�,a��p�� = 0, �A1�

�a�k�,a��p�� = 4��k−1�� �k − p� , �A2�

where the normalization can be fixed such that

�k−1�� =
d

dk
���k�ln

ke#E

�
� . �A3�

The derivative here is understood in the sense of distribu-
tions, #E is Euler’s constant, and ��0 is a free parameter
with dimension of mass having a well-known infrared origin.
It is useful to introduce

u���� � �
0

� dk

�
�k−1��e−ik� = −

1

�
ln������ −

i

2
!��� =

−
1

�
ln�i�� + ��, � � 0. �A4�

The left and right chiral fields are defined by

R��� = �
0

� dk

2�
�a��k�eik� + a�k�e−ik�� , �A5�

L��� = �
0

� dk

2�
�a��− k�eik� + a�− k�e−ik�� , �A6�

obey the commutation relations

�R��1�,R��2�� = �L��1�,L��2�� = − i!��12� , �A7�

�R��1�,L��2�� = 0, �A8�

and have the correlations


R��1�R��2�� = 
L��1�L��2�� = u���12� , �A9�

with �12=�1−�2 and obviously 
R��1�L��2��=0.

Defining the chiral charges by

QZ =
1

4
�

−�

�

d���Z����, Z = R,L , �A10�

one gets

�QR,R���� = �QL,L���� = − i/2,

�QR,L���� = �QL,R���� = �QR,QL� = 0. �A11�

It is worth mentioning that all previous commutation rela-
tions are invariant under the duality transformation

R��� � R���, L��� � − L��� , �A12�

which define the T duality in string theory.
At this point we are ready to introduce a family of vertex

operators parametrized by two real variables � and � defined
by

A�t,x� = zei����QR−�QL�:ei����R�vt−x�+�L�vt+x��: , �A13�

with

z = �2��−1/2���2+�2�/2, �A14�

where :¯: denotes the normal product in A and v is some
velocity to be determined by consistency. From Eqs. �6� and
�7� the fields �1 and �2 are vertex operators with inter-
changed � and �, with a normalization constant given by Eq.
�A14�. The factor ei����QR−�QL� is included in the definition
�A14� to ensure canonical anionic commutation relation be-
tween �1,2 without introducing Klein factors that will be im-
portant only for the fields on different wires.

The following identity is useful in determining the ex-
change properties of the vertex operators and so all correla-
tion functions

A��t,x1�A�t,x2� = �x12�−��2+�2�e−i�/2��2−�2�!�x12�:ei����R�vt−x2�−�R�vt−x1�+�L�vt+x2�−�L�vt+x1��: , �A15�

where x12�x1−x2.
The normalization of the charge densities 	� is fixed by

requiring that they generate the transformations �24� and �23�
in infinitesimal form, namely,

�	+�t,x1�,���t,x2�� = −  �x12����t,x2� , �A16�

�	−�t,x1�,���t,x2�� = − �− 1�� �x12����t,x2� . �A17�

2. Half line

In the main text, we stressed that on the half line right and
left modes couple and have nontrivial commutation relations
given by Eq. �49�. This gives rise to few changes to the

relations valid on the full line. The vertex operator is always
defined by Eq. �A13�, but the normalization constant is af-
fected by the boundary34

z = ��2��−1/2��� + ��2/2, � = 0;

�2��−1/2��� − ��2/2, 0 � �� � .
� �A18�

The right-left coupling also affects the correlation functions
of the field . In fact, while the right-right and left-left cor-
relators are still given by Eq. �A9�, the mixed ones are


R��1�L��2�� = �u���12� � = 0,

− u���12� � = � ,

− u���12� − v−���12� 0 � �� � ,
�

�A19�
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L��1�R��2�� = �u���12� � = 0,

− u���12� � = � ,

− u���12� − v+���12� 0 � �� � ,
�

�A20�

where the “boundary propagator” is

v���� =
2

�
e−�Ei�� � i�� , �A21�

and Ei�x�=�x
�dze−z /z is the exponential integral function that

at small x has the right logarithm expansion. Note that in the
above formulas for mixed correlators �1=vt1−x1 and �2
=vt2+x2 or vice versa, thus �12=vt12
 x̃12, with the sign de-
pending on the correlator if it is right-left or left-right, re-
spectively.

3. Junction

For the theory on the star graph, all the relevant commu-
tation relations and correlators of the fields follow from those
on the half line after performing the linear transformation U
in Eq. �61�. In fact all the fields d are just delocalized fields
satisfying the proper boundary conditions reported above
with different �i for each mode. Thus, comparing to the half
line Eq. �49�, it is straightforward to derive the commutation
relations for the right and left movers on the wires

�i1,R��1�,ii2,R��2�� = �i1,L��1�,i2,L��2�� = − i���12� i1i2
,

�A22�

�i1,R��1�,i2,L��2�� = Ui1k1

−1 Ul2i2
�k1,R

d ��1�,l2,L
d ��2�� ,

�A23�

where R,L
d ���=UR,L��� and

�i1,R
d ��1�,i2,L

d ��2�� = �− i���12� i1i2
, �i1

= 0;

i���12� i1i2
, �i1

= �;

�i���12� − 4i���12�e−�i1
�12� i1i2

, 0 � �i1
�� .

� �A24�

The mixed commutator �A23� simplifies greatly for critical
boundary conditions

�i1,R��1�,i2,L��2,i2�� = − i���12�Si1i2
. �A25�

Note that at spacelike distances where vt12− x̃12�0, the com-
mutators �A22� and �A23� behave as if the scattering matrix
were replaced by the critical one obtained in the infrared
limit �→� or equivalently k→0,

�i1,R��1�,i2,L��2����v2t12
2 −x12

2 �0� = − iSi1i2
�0� . �A26�

This simply means that R,L has the same properties of lo-
cality than its infrared limit.

The last complication on the star graph arises in the defi-
nition of the anyonic fields �1,2. To have the correct commu-
tation relation they must be defined according to

�1�t,x,i� = zi�ie
i����Qi,R−�Qi,L�:ei����i,R�vt−x�+�i,L�vt+x��: ,

�2�t,x,i� = zi�ie
i����Qi,R−�Qi,L�:ei����i,R�vt−x�+�i,L�vt+x��: ,

�A27�

where zi are fixed to

zi = �2��−1/2����2+�2�+2��Sii�0��/2 �A28�

and �i are the anyonic Klein factors needed to ensure the
correct commutation of anyon fields on different edges

��t,xi,i���t,xj, j� = e−i���ij��t,xj, j���t,xi,i� , �A29�

where �ij =��i− j�. It is straightforward to build them, for
example, in terms of the auxiliary Majorana algebra �ci ,cj�

= i��ij and ci
�=ci resulting in �i= :e�ici:. These factors are of

fundamental importance when considering as junction con-
dition Eq. �4� because it is written in terms of anyonic de-
grees of freedom. Oppositely, because the junction condition
we use is written in terms of currents that only get �re�nor-
malized by the statistics, they are inessential. For this reason
we do not discuss them further, remanding the interested
readers to the complete treatment presented in Ref. 74 and in
the appendix E of Ref. 9.

APPENDIX B: CRITICAL POINTS

By scale invariance any critical point is associated with a
k-independent S matrix satisfying unitarity �35�, Hermitian
analyticity �36�, and time-reversal invariance �37�, i.e.,

S� = S−1, S� = S, St = S . �B1�

The classification of these S matrices is now a simple matter.
Indeed, one can easily deduce from Eq. �B1� that the eigen-
values of S are �1. Let us denote by p the number of eigen-
values −1. The values p=0 and p=n correspond to the fa-
miliar Neumann �SN= I� and Dirichlet �SD=−I� boundary
conditions, respectively. A richer structure appears for 0
�p�n. In that case the S matrices satisfying Eq. �B1� de-
pend on p�n− p��1 parameters, giving raise to whole fami-
lies of critical points.20,21 Let us describe them explicitly for
n=2, 3, 4.

The only possibility for n=2 is p=1, leading to the one-
parameter family39,40
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S =
1

1 + �2��2 − 1 − 2�

− 2� 1 − �2 	 , �B2�

with � a real number. For �=−1 one has full transmission
and no reflection, which corresponds to the theory on the
whole line. This is an example of exceptional boundary con-
ditions already mentioned.66 It is only the only S matrix in
the family satisfying Kirchhoff’s rule for the electric charge.
Oppositely, �=1 is the only matrix satisfying Kirchhoff’s

rule for the Ũ�1� charge, as predicted by duality.
In the case n=3 one has two possibilities: p=2 and p=1.

In both cases one has a family with two real parameters �1,2,

S2��1,�2� =
1

1 + �1
2 + �2

2

� ��1
2 − �2

2 − 1 2�1�2 2�1

2�1�2 − �1
2 + �2

2 − 1 2�2

2�1 2�2 1 − �1
2 − �2

2�
�B3�

and

S1��1,�2� = − S2��1,�2� . �B4�

For generic values of the parameters these S matrices violate

both U�1� and Ũ�1�. Preserving U�1�, one must impose Eq.
�39� on Eq. �B3�. This implies �1=�2=1, leading to the iso-
lated critical point

S2 =
1

3�− 1 2 2

2 − 1 2

2 2 − 1
� , �B5�

which is invariant under edge permutations. From Eq. �B4�
one obtains instead �2=−�1+�1�. Therefore, setting ���2,
one has in this case the one-parameter family of critical
points

S1 =
1

1 + � + �2� − � ��� + 1� 1 + �

��� + 1� � + 1 − �

� + 1 − � ��� + 1�
� ,

�B6�

which is not invariant under edge permutations for generic �.
Summarizing, the critical points which respect U�1� are S0
= I3 and Eqs. �B5� and �B6�. The matrix �B5� has been dis-
covered by means of RG techniques by Nayak et al.1 The
family �B6� appeared for the first time in Ref. 21.

If one wants to preserve Ũ�1�, one must require Eq. �40�.
One is left therefore with S3=−I3,

S2 = −
1

1 + � + �2� − � ��� + 1� 1 + �

��� + 1� � + 1 − �

� + 1 − � ��� + 1�
� ,

�B7�

and

S1 = −
1

3�− 1 2 2

2 − 1 2

2 2 − 1
� , �B8�

as predicted by duality.
For n=4 the general matrices satisfying all the constraints

�B1� are too large to be reported here. Thus we only give the
critical points for n=4 satisfying the Kirchhoff’s rule Eq.
�39� for the electrical current �the analogous ones with the
Kirchhoff’s rule Eq. �39� are just −S because of duality�.
Besides S0= I4 corresponding to p=0, one has:

�i� for p=1 the S matrix depends on two real parameters
�1,2 and results to be

S11 =
1

$1
��1 + �1

2 + �2 + �1�2 + �2
2� ,

S22 =
1

$1
�1 + �1 + �1

2 + �2 + �1�2� ,

S33 =
1

$1
�1 + �1 + �2 + �1�2 + �2

2� ,

S44 = −
1

$1
��1 + �2 + �1�2� ,

S12 = −
1

$1
�2, S13 = −

1

$1
�1,

S14 =
1

$1
�1 + �1 + �2� ,

S23 = −
1

$1
�1�2, S24 =

1

$1
�2�1 + �1 + �2� ,

S34 =
1

$1
�1�1 + �1 + �2� ,

with $1=1+�1+�1
2+�2+�1�2+�2

2. The remaining entries
are recovered by symmetry. Note that this matrix is not in-
variant under edge permutations.

�ii� For p=2 the S matrix still depends on two real param-
eters

S11 =
1

$2
�3�1

2 + 2�1�1 − �2� − �1 + �2�2� ,

S22 =
1

$2
�− 1 − �1

2 + 2�2 + 3�2
2 − 2�1�1 + �2�� ,

S33 =
1

$2
�3 − �1

2 + 2�2 − �2
2 + 2�1�1 + �2�� ,

S44 = −
1

$2
��1

2 + 2�1�1 − �2� + �1 + �2�2� ,
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S12 =
2

$2
�1 + �1 + �2 + 2�1�2� ,

S13 =
2

$2
��2�1 + �2� − �1�2 + �2�� ,

S14 =
2

$2
�1 + �1 − �1�2 + �2

2� ,

S23 =
2

$2
��1 + �1

2 − 2�2 − �1�2� ,

S24 =
2

$2
�1 + �1

2 + �2 − �1�2� ,

S34 =
2

$2
��1 + �1

2 + �2 + �2
2� ,

where $2=3+3�1
2+2�1�1−�2�+2�2+3�2

2. Also this matrix
is not invariant under edge permutations.

�iii� For p=3 we have only an isolated S matrix

S =
1

4�
− 2 2 2 2

2 − 2 2 2

2 2 − 2 2

2 2 2 − 2
� , �B9�

which is invariant under edge permutation. This is the analo-
gous for four wires of the Nayak et al.1 result.

Recently, the p=1 matrix, with �1=1 and �2=−1, and the
p=3 matrix have been found to describe the scattering ma-
trix for a proposed experiment to detect the helical nature of
the edge states in quantum Hall systems.

We conclude this appendix with the matrix with p=n−1
for general n satisfying the electric Kirchhoff rule

S =
1

n�
�2 − n� 2 2 ¯ 2

2 �2 − n� 2 ¯ 2

] ] ] ¯ ]

2 2 2 ¯ �2 − n�
� , �B10�

since it is the most stable in the RG phase diagram as shown
in the text. This is the only matrix which is invariant under
wire permutations �i.e., that has all diagonal elements equal
and nondiagonal as well�, satisfying the Kirchhoff’s rule and
with all nonvanishing entries.
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